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Tafel 5.3.6A der International Tables ersichtlich ein das unter Beachten der Substitutionen (3) und nach 
l~bertragungsfehler eingeschlichen, der leider auch Kiirzen yon Z/ihler und Nenner unmittelbar in (4) 
Folgefehler in der Tabelle 5.3.6B verursacht hat. Die iibergeht: 
iibrigen Abweichungen, welche die Tabelle 1 erkennen 
lasst, sind dagegen gering; ihre Ursache darf wohl in 
erster Linie restlichen numerischen Ungenauigkeiten 
der Tabellen 5.3.6A zugeschrieben werden. 

Ein Beispiel fiir eine erweiterte Anwendung 
der A xug-Tabelle 

Es sei bemerkt, dass man mit der Schreibweise (4) des 
Absorptionsfaktorintegrals implizit auch einen wich- 
tigen speziellen elliptischen Fall erfasst, n~mlich den 
Fall des Rotationsellipsoids dessert Rotationssymme- 
trieachse e die Drehachse ist und das _l_c durchstrahlt 
wird (sogen. ~quatoraufnahme). Filhrt man vor der 
Substitution (3) eine lineare Dehnung in z-Richtung 
durch 

z - +  z '=(c /a)z  

so wird die Kugel in ein Rotationsellipsoid mit den 
Achsen a =  R und c = (c/a)R iiberfiihrt; a wie r bleiben 
yon der Dehnung unberiihrt, da sie senkrecht zur Deh- 
nungsrichtung liegen. Man findet: 

Aml=  I+tl_ r~Azyl(ltr)dz'/(4rcaZc/3) 

(c/a)a ' 

AEu = AKug(,Cta) . 

Diese Gleichung besagt, dass der Absorptionsfaktor 
Am1 des Rotationsellipsoides bei einer Durchstrahlung 
_l_e unabhfmgig vonder  L/inge der c-Achse ist und mit 
dem Wert A xug ftir R = a tibereinstimmt (Weber, 1963). 

Der Verfasser dankt der Deutschen Forschungsge- 
meinschaft auch an dieser Stelle vielmals ftir die finan- 
zielle Unterstiitzung der vorliegenden Arbeit. Dank 
gebtihrt ferner dem Deutschen Rechenzentrum, mit 
dessen IBM-Anlage 7094 alle vorliegenden numerischen 
Berechnungen ausgefiihrt werden konnten. 
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A simple coding system is proposed which applies to those layered, tetrahedrally close-packed struc- 
tures whose secondary nets may be generated by two sets of parallel (zigzag) lines (B-W, Friauf-Laves, 
it, a, P, M phases, etc.). This coding scheme represents a great condensation of structural data, from 
which atomic coordination can be regenerated; it enables one to recognize similarities between struc- 
tures without plotting out all the atoms; and it indicates how new members of this structure family 
may be generated. 

Introduction 

Tetrahedrally close-packed structures (Frank & Kas- 
per, 1958, 1959; Shoemaker & Shoemaker, 1967, 1969) 
contain interpenetrating triangulated coordination 
number (CN) 12, 14, 15, or 16 polyhedra which are in 
most cases generated by the alternate stacking of pri- 

mary layers of pentagon-triangle, pentagon-hexagon- 
triangle or hexagon-triangle nets of atoms with secon- 
dary layers of triangle, square-triangle or square nets 
of atoms, such that all pentagons of successive primary 
nets are covered antisymmetrically by pentagons of 
neighbouring primary nets, and similarly for the hex- 
agons. The atoms of the secondary interleaving nets 
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centre all (and only) the pentagons and/or hexagons of 
the primary nets. There are also some tetrahedrally 
close-packed structures that are not formed by stack- 
ing planar layers; for instance the R and 6 phases. In 
these eases there are regions where the atoms are almost 
confined to planes as in the layered structures, but there 
are also regions where the planarity is disturbed. The 
generating and coding only applies to the layered, 
tetrahedrally c.p. structures. It is convenient to regard 
such structures in two groups: (1) those characterized 
by a linear repeat sequence of pentagons and/or 
hexagons along what we call the basal repeat row, 
such that repetition of this sequence along the row and 
about a direction normal to the basal row generates the 
whole of the primary net. The structures in this group 
are characterized by a secondary net that may be 
generated by two sets of parallel (in most cases zigzag) 
lines; (2) those structures whose secondary nets cannot 
be generated by two sets of parallel (zigzag) lines. In 
some cases these structures may be characterized by 
having a two-dimensional tile of pentagons and/or 
hexagons, which by repetition generates the whole net 
as in the case of Fig. 16 of Frank & Kasper (1959). 

N 

p I P I P X P X LR 

+ _ _ + 

y d i rec t ion 

x d i rec t ion = 

(a) 

y direction 

L 

V 

x d i r e c t i o n  

P X P / VL 

O O 

(b) 
Fig. l(a). Structure diagram and code for the M phase 

(Nb-Ni-AI). (b) Structure diagram and code for the p phase 
(Mo6Co7). Atoms of one primary net at intersections of 
lines, atoms of secondary net represented by full circles. 
Second primary net which covers pentagons of first primary 
net antisymmetrically is not shown. 

In both groups successive primary nets whose penta- 
gons and/or hexagons severally cover those of the 
preceding net antisymmetrically may or may not be 
equivalent. 
| | A n  essentially unlimited number of possible struc- 
tures of both groups can be devised; whereas group 2 
structures are currently recognized only as rarities in 
our appreciation of structural architecture, those of 
group 1 are well-known in such phases as Laves, a,/z, 
P, M, etc., and an increasing number of structures are 
being attributed to this class. Frank & Kasper (1958, 
1959), who developed our systematic knowledge of 
these structures, proceeded heuristically deriving dif- 
ferent codings to describe different families of struc- 
tures. However, as a result of subsequent work (notably 
Shoemaker & Shoemaker, 1967, 1969) it is apparent 
that all structures of group 1 can be described syste- 
matically by coding the repeat sequence of pentagons 
and/or hexagons of the primary net along two orthog- 
onal axes X and Y. Since pentagons and hexagons of 
one primary net are covered antisymmetrically by those 
of primary nets above and below, these are also defined 
by the coding of the first primary net, as is the secon- 
dary net whose atoms centre pentagons and hexagons 
(only) of the primary net. 

Coding of structures whose primary nets have linear 
(zigzag) repeat units 

Symbols describe the pentagons (P) and hexagons 
(H) in the primary layers and the method of joining 
these, either edge to edge (/) or apex to apex with two 
intervening triangles (x ) .  The nets are oriented with 
respect to the orthogonal X and Y axes such that the X 
axis (horizontal) gives the direction of extension of the 
basal row of polygons sharing apices and/or edges, 
and the Y axis (vertical) makes an angle between 0 ° 
and approximately 30 ° with the direction in which the 
basal row repeats itself in the same orientation. The 
next row is not necessarilly a crystallographic repeat of 
the first one, but it contains pentagons and hexagons 
in the same sequence and orientation. The repeat se- 
quence of pentagons and/or hexagons along the X 
direction can be described with these symbols as, for 
example, P/PIP x P x for the M phase structure [(Fig. 
l(a)]. 

The connections between pentagons or hexagons 
may cause the row to continue in a direction up 
(coded+)  or down ( c o d e d - )  with respect to the X 
direction or in a direction parallel to it (coded 0). 
The basal row should extend in the direction of the 
X axis, that is the kinks should always produce turns 
towards the X axis, or if a turn is away from the X axis, 
the next turn should be towards it. Thus the repeat 
sequence for the M phase is P / P / P  x P x .  

+ + 

The basal repeat unit of the primary net repeats along 
the orthogonal Y direction with shift movements 
either left (symbol L), or right (symbol R) or none 
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(symbol V), so that the pentagons and/or hexagons 
form strips in this direction. Along these strips hexa- 
gons are connected either by opposite edges or apices 
(continuing the direction L, R or V) or by an edge and 
a next-but-one apex or by two next-but-one edges or 
apices, (changing the direction from L, R, or V). Suc- 
cessive pentagons along these strips share one apex 
with an intervening triangle on one side (See e.g. Fig. 1). 

Repetition of the repeat unit along the basal row 
and along the Y axis according to its repeat scheme 
generates the whole of the primary net. Since the pen- 
tagons and hexagons of one primary net are covered 
antisymmetrically by pentagons and hexagons of the 
primary nets above and below, specification of the 
basal repeat of one primary net gives the primary nets 
above and below merely by interchanging x for / and 
vice versa; the repeat sequence along the Y axis re- 
mains unchanged. Thus, for example, the primary nets 
above and below the primary net H x  P / H x  P/;  LR  

+ + 

are HIP x HIP x ; LR. This indicates that inthe approx- 
-t- -t- - -  - -  

imate direction of the X axis successive polyhedra 
(icosahedra or CN14 polyhedra) share triangular faces. 
In the approximate direction of the Y axis CN14 poly- 
hedra also share triangular faces, but icosahedra share 
edges. 

Since all of the atoms of the secondary net centre 
all the pentagons and/or hexagons o f  the primary nets 
(not the triangles), the designation of the primary net 
repeat sequence specifies also the secondary net, and 
therefore the location, sequence and coordination of 
all atoms in the structure. Primary net sequences 
(0;LR) give 3 6 (Schlfifli symbol) secondary nets, (0;V) 
give 4 4 secondary nets and (+  - ; LR, etc.) or (0; VL, 
etc.) or 0; VR, etc.) give square-triangle secondary nets. 

This system of coding enables one to describe very 
simply any group 1 tetrahedrally close-packed struc- 
ture having a linear (zigzag) basal repeat sequence, in 
such a way that the structural arrangement of the 
primary and secondary nets can be generated from 
the symbols, and the coordination of the atomic sites 
recognized. It therefore permits a very great condensa- 
tion of structural information, as well as the systematic 
prediction of all possible structures of this type. It is 
only necessary to generate the primary net (both 
primary nets in case they are non-equivalent) in order 
to determine the coordination of the various atoms. 
This is uniquely fixed by the type of connections be- 
tween pentagons and/or hexagons; all possible cases 
for group 1 structures are shown in Fig. 2. 

In Table 1 codes for some group 1 structures are given 
arranged in three subgroups to facilitate generation of 
other possible structures. Under A are listed structures 
with + and - in the horizontal row and L and/or R 
in the vertical direction.The secondary net consists of 
squares and triangles and all kinks in the parallel lines 
are about 150 ° . New structures may be generated by 
changing the sequence of + and - ,  or for a certain 

+ - sequence by changing the sequence of H and P, 
making sure that there is an even number of kinks 
(including in the count the kink that may be introduced 
at the end of the sequence) in order to produce a repeat. 
More structures result from changing the LR sequence 
for each + - ,  HP sequence. 

The structures listed under B in Table 1 are characte- 
rized by 0 in the horizontal row and L, R or V in the 
vertical direction. V followed by L or R produces 150 o 

CN 12 • 

CN 14 o 

CN 15 0 

CNI6 0 

\o / 

7/ r o I~---~-  
- -  " i 

Fig.2. Atom coordinations in layered, tetrahedrally close- 
packed structures. The second primary net is shown in 
broken lines. 
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kinks as above, but  L followed by R ( and vice versa) 
produces 120 ° kinks. With only V the secondary net 
is rectangular,  with only L followed by R (and vice 
versa) it is triangular.  There is now a fundamenta l  
difference between al l -H and all-P structures. Since 
in the case of  a l l -H L and R result in the same 
row sequence, there is only one al l -H structure with 
tr iangular  net (Zr4A13 down the hexagonal  axis). In the 
case of an all-P structure L and R represent different 
row sequences. Each pentagon is adjacent to two 
pentagons in the next row, sharing an apex or side 
with one of them (icosahedra sharing a face) and an 
apex with intervening triangle on one side with the 
other (isosahedra sharing an edge). As explained 
above, the strips are chosen in the latter directions. 
The different Fr iauf-Laves  phases all have topologically 
the same secondary net but differ in L R sequences. In 
H - P  structures L and R are natural ly different. In the 
sequence along the row each polygon may  be again H 
or P as long as a repeat is achieved and in vertical di- 
rection new structures may  be formed by different se- 
quences of L, R and V. 

In the structures of  types A and B the basal rows are 
chosen such that  a hexagon shares either opposite 
apices (or edges" no change of direction) or one edge 
and one non-adjacent  apex (change of direction). 
Similarly, a pentagon shares an edge and an opposite 
apex (no change of direction) or two non-adjacent 
edges (or apices" change of direction). In some cases, 
examples of which are listed under C in Table 1, there 
is an alternate choice of basal row [shown in Fig. 3(a) 
for MgCu2] which results in a unit cell with a small 
rectangular repeat. The structure has a mirror  plane 
perpendicular  to the plane of the paper containing the 
X '  direction. A row line making  an angle with the 
X '  direction may,  therefore, be called + .  A kink of 
about  150 ° is produced by + followed by 0; a kink of 
about  120 ° results from + followed by -T- (pentagon 
sharing an edge and adjacent apex or hexagon sharing 
two next-but-one edges or apices). In order to mainta in  
parallel rows along the Y' axis only V is allowed in that 
direction. The structures derived by different combi- 
nations of + and 0, may  also be derived by the proce- 
dures described above and no new structures result. 

Table 1. Coding f o r  some group 1 structures 

Planes in 
which 
nets lie 

001 

Coding for 
Structure structure 

A. ~r phase H× H~ LR 
+ - 

M phase 001 P/P/P x P x LR 
+ -  _ + 

P phase 001 P / H x  P / H x  LR 
+ - _ + 

Fig. 3(b) P/H/P/ L 
m m  ,.l- 

B .  fl-W 001 Hx V 
0 

Zr4AI3 110 P x  P/ V 
0 0 

Zr4AI3 001 H x L, R 
0 

MgZn2 110 P x P/ LR 
0 0 

MgCu2 1T0 P x P/ L3* 
0 0 

MgNi2 110 P x P/ LLRR 
0 0 

MgA1Cu (5-layer Laves) 110 P x P/ L4R 
0 0 

MgAICu (9-layer Laves) 110 P x P~ (LLR)3* 
0 0 

p phase 110 P × P/ (VL) 3. 
0 0 

Idealized planar R P x  H× P/H/ (VL)3* 
0 0 0 0 

C. Alternate description for MgCu2 P x P~ V 
4- :F 

Alternate description for Fig. 3(b) P/H/P/ V 
q - T o  

Schl/ifli symbols for 
Simplified secondary net and ratio of 

code numbers of different corners 
H(11 ; LR) 32434 

P(22; LR) 32434 + 3342(1/1) 

PH(22; LR) 32434 + 3342(1/1) 

PHP(21 ; L) 3342 + 36(2/1) 

H(0; V) 44 

P(0; V) 44 

H(0; L, R) 36 

P(0; LR) 36 

P(0; L) 36 

P(0; L2R 2) 36 

P(0; L4R) 36 

P(0; L2R) 36 

P(0; VL) 3342 

PH(0; VL) 3342 

P(+ ~ ; V) 

PHP(+_ -T-0; V) 

* Tripling to achieve rectangular repeat. 
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This new axial system seems however promising in 
deriving group 2 structures. (For instance Frank & 
Kasper's hypothetical structure, shown in Fig. 16 
of their 1959 paper, could be coded: H x H / H x ,  hex- 
agonal.) 4- 0 :F 

There are some other features of the coding which 
are not uniquely defined, and this allows a choice in 
describing some structures, without impairing the 
usefulness of the coding, since the regeneration of the 
structure from the code adopted is indeed unique. 

(1) The choice of primary and secondary nets is not 
necessarily uniquely defined. This is shown in Table 1 
for the A13Zr4 structure which can be described in two 
different projections, one with a 44 and the other with a 
36 secondary net. 

(2) When the primary net contains only hexagons 
(and triangles) either of the two orthogonal axes can 
be selected as the X direction. Thus, the 'all-hexagon 
Iz' structure can be described either as H~; V(L, R) or as 

0 

H/Hx ; L. If similarity to the/1 phase wants to be ex- 
- + 

pressed the first description is the preferable one. 
(3) When the primary net has a threefold symmetry 

axis as in the case of an all-H primary net with 36 
secondary net there are, of course, three different 
choices for the basal row. When the structure has a 
mirror plane perpendicular to the plane of the nets so 
that the alternate description with a row line of type 
C is possible, there are also two choices for a basal 
row of type A: one all-R in vertical direction and the 
other one all-L [X" and X in Fig. 3(b)]. 

The addition of the + ,  - and 0 symbols to the 
coding is a redundant feature (if a row line of type C 
is left out of consideration), since the information is 
already contained in the sequence of P, H, x , /symbols;  
however, it does aid in viewing the repeat sequence of 
the primary and secondary nets. For typographical 
purposes the + ,  - ,  0 and + may be added as sub- 
scripts to the connection symbols x a n d / .  For com- 
puter use these symbols might be printed on the same 
line after the connection symbols or, alternatively, be 
left out. 

Comparison with Frank-and-Kasper symbols 
Frank & Kasper (1959) developed a formalism for 

those planar, tetrahedrally close-packed structures 
which have a a-phase type repeat in vertical direction 
(our type A structures with LR repeat, or type B struc- 
tures with VL repeat). In Frank & Kasper's nomen- 
clature the vertical a-phase repeat is incorporated into 
their strips of pentagons and triangles or hexagons 
and triangles extending in the vertical direction. De- 
pending on the way the polygons are tilted with respect 
to the vertical direction these strips are called D or U 
for pentagons (down and up) and L or R for hexagons 
(left and right). The strips are connected in a horizontal 
direction either directly (indicated by a period) or by an 
intervening triangle strip (indicated by p). Thus the 

symbol given for the P phase is: 

UpR.Dpr.. 
+ - - + or numerical: (2, 2). 
D.LpU.Rp 

Both primary nets are specified although the symbol 
for the second net follows directly from the first one. 
Our code for the basal row (Table 1) may be derived 
from this Frank & Kasper symbol by replacing U and 
D by P, L and R by H,p by x and(.) b y / .  To complete 
our code the sequence in the vertical direction (which 
may differ from the a-phase sequence) has to be given 
also. 

A different formalism was used by Frank & Kasper 
for those tetrahedrally close-packed structures which 

[1111 
[11 o]~ 1, [OOl ] 

(a) 

(b) 
Fig.3(a). Primary and secondary net for MgCu2, normal pro- 

jection on (1T0). Alternate choice of unit cell is indicated. 
(b) Primary and secondary net for a hypothetical structure. 
Three possible choices for the X axis (direction of basal row) 
are indicated. 
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may be derived by stacking and in-filling of Kagom6 
nets perpendicular to a threefold axis, which in- 
eludes the structures of the different types of Friauf- 
Laves phases. The symbol describing the layer sequence 
for MgNi2 is: /x A,'7 V and for the/1 phase: [ A0[. In our 
description the Kagotn6 nets are perpendicular to the 
plane of the paper containing the horizontal rows of 
secondary-net atoms. The Frank & Kasper symbols 
define our sequence in the vertical direction by re- 
placing /X by L, V by R and 0 by V. 

One of us (C.B.S.) wishes to acknowledge the finan- 
cial support by the Army Research Office (Durham). 

We are grateful to Professor David P. Shoemaker for 
helpful comments. 

References 

FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 
184. 

FRANK, F. C. & KASPER, J. S. (1959). Acta Cryst. 12, 
483. 

SHOEMAKER, C. B. & SHOEMAKER, D. P. (1967). Acta Cryst. 
23, 231. 

SHOEMAKER, C. B. t~ SHOEMAKER, O. P. (1969). To be 
published in A.I.M.E. Symposium Proceedings. New York: 
Plenum Press. 

Acta Cryst. (1969). B25, 1183 

The Crystal Sructure of Yugawaralite 

BY I. S. KERR AND D. J. WILLIAMS 
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A single crystal of yugawaralite Ca2AI4SiI2032.8H20 w a s  examined by X-rays and 1700 non-zero inten- 
sities were measured. An N(z) test indicated the absence of a centre of symmetry and the space group 
Pc was adopted. Structural analysis has revealed an alumino-silicate framework consisting of 8-, 5- 
and 4-membered rings. In the course of the refinement the calcium cation appeared coordinated by 
four oxygen atoms and four water molecules, and aluminum and silicon were shown to be in an ordered 
arrangement from consideration of interatomic distances. With isotropic temperature factors the 
final reliability index was 0.065 and the N(z)based on Fe~lc almost coincided with that of Fobs. 
Yugawaralite is a zeolite not belonging to any recognized family. It possesses a two-dimensional system 
of channels approximately 3.6 x 2-8 ,~ free diameter. 

Introduction 

Yugawaralite was described by Sakurai & Hayashi 
(1952) as a mineral of the zeolite family having the 
formula Ca4AI7Si2005414HaO and a density of 2.20 
g.cm -3. More recently a crystal of yugawaralite found 
at Heinabergsjokull, south-eastern Iceland, by Walker 
(1969) was used for further X-ray studies by Barrer & 
Marshall (1965). By means of Weissenberg and pre- 
cession photographs they determined the unit cell as 
monoclinic with: a=6.73 +0.01 A, b-- 13.95 +0.01 ~,  
c-- 10.03 + 0.01 A, /3= 111 °30' + 2', giving unit-cell 
contents, with a certain degree of rounding, as 
CaEAI4SiIEO32.8H20. They applied the statistical test 
of Howells, Phillips & Rogers (1950), and the N(z) plot 
suggested the absence of a centre of symmetry. From 
this and the noting of systematic absences they pro- 
posed the space group Pc. The structure has been briefly 
described by Kerr & Williams (1967); in the present 
paper a full and final description of the structure is 
given which includes the ordering of aluminum and 
silicon, and the cation and water positions. 

Experimental 

The present investigation is a continuation of that of 
Barrer & Marshall (1965) with a crystal of size 0.2 × 0.2 
× 0.2 mm from the same source. A Buerger precession 

camera and Mo K~ radiation were used for the syste- 
matic collection of three-dimensional X-ray intensity 
data. As it is not possible with a precession camera to 
use multiple film techniques, owing to the different 
angles of incidence of the two beams giving rise to the 
same diffraction spot, photographic data were obtained 
by taking a series of timed exposures of 27,9,3 and 1 
hours and in some cases 20 minutes. The crystal was 
mounted so that it rotated about its b axis, thus enab- 
ling data to be collected up the two shorter axes 
without needing to remount the crystal. By use of a 
precession angle of 32.5 ° the following layers were 
taken: nkl where n = 0, 1,2 and 3, and hkn where n = 0, 
1,2,3 and 4. 

A Joyce-Loebl integrating microdensitometer (of the 
flying spot scanner type) was used for measurement of 
all the data of about 6000 diffraction spots. It was found 


